
Multidimensional generalized coherent states

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys. A: Math. Gen. 36 199

(http://iopscience.iop.org/0305-4470/36/1/313)

Download details:

IP Address: 171.66.16.96

The article was downloaded on 02/06/2010 at 11:26

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/36/1
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 36 (2003) 199–212 PII: S0305-4470(03)53864-1

Multidimensional generalized coherent states

M Novaes1 and J P Gazeau2

1 Instituto de Fı́sica de São Carlos, Universidade de São Paulo, CP 369, São Carlos, SP,
13560-970, Brazil
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Abstract
Generalized coherent states were presented recently for systems with one degree
of freedom having discrete and/or continuous spectra. We extend that definition
to systems with several degrees of freedom, give some examples and apply the
formalism to the model of two-dimensional fermion gas in a constant magnetic
field.

PACS numbers: 42.50.Ar, 03.65.Fd, 71.10.Ca

1. Introduction

One recent generalization of coherent states [1, 2] is based on a set of three requirements
introduced by John Klauder some years ago [3], namely normalization, continuity in the
parameter(s) and a resolution of the unity. For the sake of completeness, we outline this
formalism here. Based on the required properties, one can say that, given a finite or separable
infinite-dimensional Hilbert space with orthonormal basis denoted as {|n〉}n∈N, a superposition
of the type

|J, γ 〉 = 1√
N (J )

�∑
n=0

J n/2

√
ρn

e−iγ en |n〉 0 � J < R γ ∈ R � � ∞ (1)

is a coherent state if

N (J ) =
�∑

n=0

J n

ρn

(2)

is convergent for J < R and if the moment problem∫ R

0
J n W(J )

N (J )
dJ = ρn (3)
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admits a positive solution for W(J ) (R can of course be infinite). Many different moment
problems of this type are presented and solved for instance in [4]. Knowledge of W(J ) allows
a resolution of identity in terms of the coherent states:

lim
T →∞

1

2T

∫ T

−T

dγ

∫ R

0
dJ W(J )|J, γ 〉〈J, γ | = I. (4)

We now suppose that the kets |n〉 are eigenvectors of a self-adjoint operator H with
eigenvalues ωen,

H |n〉 = ωen|n〉 (5)

ω being some positive constant and {en} being a strictly increasing sequence of numbers with
e0 = 0. We thus obtain a property that we call evolution stability (temporal evolution if H has
a Hamiltonian meaning):

e−iHt |J, γ 〉 = |J, γ + ωt〉. (6)

In previous works the relation 〈J, γ |H |J, γ 〉 = ωJ (or some variant of it, see [2]), called
the action identity, was imposed. In order to obtain it from our definition (1) we have to set

ρn = e1e2, . . . , en for n � 1 ρ0 = 1. (7)

Different choices for the function ρn are possible and will give different mean values for H
and also different moment problems. The variable J was called the ‘action variable’ but we
hereafter call it the coherence variable.

In what follows we shall present a few explicit examples, based on the simplest and most
popular coherent states.

1.1. Examples

One should note that all the following cases have in common the linear nature of the spectrum,
which allows a special grouping of the J and γ variables leading to an analytical formulation
of the Fock–Bargmann type.

1.1.1. Harmonic oscillator. The space of states of the harmonic oscillator is an infinite-
dimensional Hilbert space in which its stationary Schrödinger equation reads (h̄ = 1)

H |n〉 = ωn|n〉 (8)

(we consider a shifted Hamiltonian to lower the zero-point energy to zero). Therefore,
equation (1) becomes

|J, γ 〉 = e−J/2
∞∑

n=0

J n/2

√
n!

e−inγ |n〉. (9)

Identifying
√

J e−iγ ≡ z we have the canonical coherent states, also called the Glauber–
Klauder–Sudarshan (GKS) states.

These states are overcomplete with weight function W(J ) = 1
2π

:

1

2π

∫ 2π

0
dγ

∫ ∞

0
dJ |J, γ 〉〈J, γ | =

∞∑
n=0

|n〉〈n| = I. (10)
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1.1.2. The case of su(1, 1). Another interesting choice for ρn is based on the binomial
coefficient:

ρn =
(

ν + n

n

)−1

1 � ν ∈ N. (11)

In this case we have

|ν; J, γ 〉 = (1 − J )(ν+1)/2
∞∑

n=0

√(
ν + n

n

)
J n/2 e−inγ |n〉 (12)

and the normalization condition imposes 0 � J < 1. These states can be identified with
the Perelomov coherent states for the su(1, 1) algebra in its discrete series representation
Uν where ν ∈ N∗ [8]. Here we recall that the three generators of this algebra obey the
commutation relations

[K0,K±] = ±K± [K+,K−] = −2K0 (13)

and in the involved discrete series representation we have

K0|ν, n〉 =
(

ν + 1

2
+ n

)
|ν, n〉 ν � 1 n � 0. (14)

(This notation is slightly different from the standard one.) Similar to the previous case,
the grouping of the two parameters into the complex number z = √

J e−iγ leads to a
Fock–Bargmann formalism. However, the important difference with the oscillator (or Weyl–
Heisenberg) case lies in the fact that z is now restricted to the open unit disc.

The weight function for these states is W(J ) = ν
2π(1−J )2 and the overcompleteness relation

holds in the unit circle:

ν

2π

∫ 2π

0
dγ

∫ 1

0

dJ

(1 − J )2
|ν; J, γ 〉〈ν; J, γ | =

∞∑
n=0

|n〉〈n| = I. (15)

1.1.3. The case of su(2). We can also apply this formalism to a finite-dimensional system, for
example, a unitary irreducible representation of su(2), a case in which we also have a complex
Fock–Bargmann structure and for which we have the equation Lz|j,m〉 = m|j,m〉, j ∈
N/2,−j � m � j . The condition en � 0 demands that we introduce the shifted operator
L̃z = Lz + j and the states |n〉 ≡ |j,m〉 such that n = j + m. Therefore, L̃z|n〉 = n|n〉 and we
can write

|z〉 = 1√
N (|z|2)

2j∑
n=0

zn

√
ρn

|n〉 z =
√

J e−iγ . (16)

If we choose

ρn =
(

2j

n

)−1

(17)

we have

N (|z|2) =
2j∑

n=0

(
2j

n

)
|z|2n = (1 + |z|2)2j (18)

and therefore

|z〉 = 1

(1 + |z|2)j
j∑

m=−j

√(
2j

j + m

)
zj+m|j,m〉 (19)
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which are the usual su(2) coherent states. We can use points of the unit sphere rather than
those on the plane to label these states, through the projection z = tan(θ/2) e−iϕ = √

J e−iγ

(ϕ ≡ γ is the azimuth and θ is the latitude). The states are then denoted by |j ; θ, ϕ〉 and are
known as Bloch states in the literature. They are of course overcomplete, as we can see from
the formula

2j + 1

4π

∫
|j ; θ, ϕ〉〈j ; θ, ϕ| dS = 2j + 1

π

∫
d2z

(1 + |z|2)2
|z〉〈z| =

j∑
m=−j

|j,m〉〈j,m| = I2j+1

(20)

where dS = sin θ dθ dϕ and Iq is the identity in the q-dimensional Hermitian space C
q carrying

the involved UIR of su(2).

2. Symbols and Berezin–Lieb inequalities

Berezin [6] and Lieb [7] separately introduced the concepts of upper and lower symbols of an
operator A, respectively Â and Ǎ. They are defined through the relations

A =
∫

dµ(z)Â(z)|z〉〈z| Ǎ(z) = 〈z|A|z〉

where |z〉 is a set of complete (or overcomplete) normalized quantum states that (usually, but
not necessarily) provide a resolution of the unity. Note that given an operator A its upper
symbol is not unique in general. Let us give some of these symbols for the three examples we
just presented.

• For the harmonic oscillator and in terms of the corresponding creation and annihilation
operators,

〈z|a†a|z〉 = |z|2 (21)

a†a =
∫

d2z(|z|2 − 1)|z〉〈z|. (22)

• For the algebra su(2),

〈j ; θ, ϕ|Lz|j ; θ, ϕ〉 = j cos θ (23)

Lz = 2j + 1

4π

∫
dS(j + 1) cos θ |l; θ, ϕ〉〈j ; θ, ϕ|. (24)

• For the algebra su(1, 1),

〈ν; J, γ |K0|ν; J, γ 〉 = ν + 1

2

(
1 + J

1 − J

)
(25)

K0 = 1

2π

∫ 2π

0
dγ

∫ 1

0

ν dJ

(1 − J )2

(
ν − 1

2

) (
1 + J

1 − J

)
|ν; J, γ 〉〈ν; J, γ |. (26)

In the case ν = 1 the last equation does not apply and has to be replaced by

K0 = lim
ε→0+

1

2π

∫ 2π

0
dγ

∫ 1

0
dJ

δ(1 − ε − J )

(1 − J )2
|ν = 1; J, γ 〉〈ν = 1; J, γ |. (27)
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It can be proved (see [7]) that, given any convex function g, the following inequalities
(called the Berezin–Lieb inequalities) hold:∫

dµ(z)g(Ǎ) � Tr(g(A)) �
∫

dµ(z)g(Â). (28)

As an application of our formalism, we shall present in section 4 an evaluation of the
Berezin–Lieb (BL) inequalities for the thermodynamic potential of a two-dimensional electron
gas in a constant perpendicular magnetic field.

At this point, an interesting question can be addressed: given a separable Hilbert space
with an orthonormal basis {|n〉, n ∈ N} , the related number operator N such that N |n〉 = n|n〉,
one can build the families of states (9) and (12). How are the associated BL inequalities with
A = N related? The answer is a simple coordinate change. When dealing with the family (12)
one should interpret N as K0 − (ν + 1)/2 and the BL inequalities are∫ 1

0

ν dJ

(1 − J )2
g

(
(ν + 1)J

1 − J

)
� Tr(g(N)) �

∫ 1

0

ν dJ

(1 − J )2
g

(
(ν − 1)J

1 − J

)
(29)

where g is any convex function. The transformations

x± = (ν ± 1)J

1 − J
(30)

take (29) to
ν

ν + 1

∫ ∞

0
g(x+) dx+ � Tr(g(N)) � ν

ν − 1

∫ ∞

0
g(x−) dx−. (31)

It is evident that if we had used family (9) we would have reached the same result, except for
the ν-dependence. This dependence shows that the canonical coherent states are more suited
for calculating BL inequalities than any of the families (12). A similar observation can be
made for the su(2) coherent states and one can see that in the limit j → ∞ they give the same
results as the canonical ones.

3. Generalization

We now want to generalize expression (1) to the case of several degrees of freedom, that is,
when the basis states are written as |n1, n2, . . . , nr 〉 ≡ |n〉, r � 2.

Let us begin by an example extending the above su(2) construction. Consider the Hilbert
space H = ⊕j∈N/2Hj , orthogonal direct sum of all Hermitian spaces Hj = C2j+1 carrying
unitary irreducible representations of su(2). For each representation Uj we have the family
{|j ; θ, ϕ〉} satisfying (20), which in this case we call ‘resolution of the orthogonal projector’
I2j+1. To get an overcomplete family of states solving the unity on the large Hilbert space H
one could, for example, define

|J1, J2, γ1, γ2〉 = e−J1/2
∑
2j∈N

J
j

1 e−i2jγ1

√
(2j)!

|j ; θ, ϕ〉 ≡ |J1, γ1, θ, ϕ〉 (32)

where tan(θ/2) e−iϕ = √
J2 e−iγ2 . One should note the ‘GKS-like’ character of this

superposition. These states obey∫ 2π

0
dγ1

∫ ∞

0
dJ1

∫
dS W(J1)|J1, γ1, θ, ϕ〉〈J1, γ1, θ, ϕ| = I (33)

with W(J1) = J1
8π2 . Note that it is interesting in itself to divide the large Hilbert space into its

bosonic and fermionic parts,

H = Hbos ⊕ Hferm (34)
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and to give the explicit form of the weight functions Wbos and Wferm involved in the resolution
of the respective projectors Ibos and Iferm. The result is

|J1, γ1, θ, ϕ〉-bos = e−J1/2
∑

j

J
j/2
1 e−ijγ1

√
j !

|j ; θ, ϕ〉 j = 0, 1, 2, . . . (35)

|J1, γ1, θ, ϕ〉-ferm = e−J1/2
∑

j

J
(2j−1)/4
1 e−i(2j−1)γ1/2√( 2j−1

2

)
!

|j ; θ, ϕ〉 j = 1

2
,

3

2
, . . . (36)

Wbos(J1) = 2J1 − 1

8π2
(37)

Wferm(J1) = 2J1

8π2
. (38)

Based on this simple example, we obtain multidimensional generalizations of the standard
one-dimensional coherent states, possibly in a recursive fashion. First of all, we assume we
have a complete set of r commuting observables satisfying the eigenvalue equations:

Ai|n〉 = ωiei(n)|n〉. (39)

So, we could deal with the following general form of corresponding coherent states:

|J,γγγ 〉 = 1√
N (J)

∑
{n}

Jn/2

√
ρ(n)

e−iγγγ ·e(n)|n〉 (40)

where the sum runs over all possible values of the variables ni,N is a normalization factor and
ρ(n) is an arbitrary positive function of all the indices. The expressions Jn/2 and γγγ ·e(n) stand
for

∏r
i=1 J

ni/2
i and γ1e1(n) + · · · + γrer(n), respectively. We could add specific conditions to

definition (40) as was done in [1, 2], but we will rather adopt a more intuitive approach, based
on recursivity.

We can first introduce coherence variables for the rth degree of freedom:

|n1, n2, . . . , Jr , γr〉 = 1√
Nr (Jr)

∑
nr

J
nr/2
r√
ρr

e−iγr er (n)|n〉 (41)

where the sum runs over all possible values of nr and both the norm Nr (Jr) and the function
ρr may depend on the remaining indices. These states should satisfy a resolution of the
orthogonal projector on the subspace defined by fixing n1, n2, . . . , nr−1 (we shall impose the
adapted Klauder conditions at each step):∫

dµ(Jr, γr )|n1, n2, . . . , Jr , γr〉〈n1, n2, . . . , Jr , γr | =
∑
nr

|n〉〈n| = In1,n2,...,nr−1 . (42)

Now, if we suppose that the dependence of the ρi and ei on the r-uple nnn is organized in an
hierarchical fashion as ρi(nnn) = ρi(n1, n2, . . . , ni) and ei(nnn) = ei(n1, n2, . . . , ni), we can
proceed to associate a coherence variable with each degree of freedom until we get

|JJJ ,γγγ 〉 = 1√
N1

∑
n1

J
n1/2
1√
ρ1

e−iγ1e1
1√
N2

∑
n2

J
n2/2
2√
ρ2

e−iγ2e2 · · · 1√
Nr

∑
nr

J
nr/2
r√
ρr

e−iγr er |n〉 (43)

where Ni stands for Ni (Ji, Ji+1, . . . , Jr ; n1, n2, . . . , ni−1).
Equation (39) guarantees stability under the action of the group generated by all operators

Ai . The choice of the functions ρi will determine their expectation values. One should keep
in mind the possible dependence of ρi and ei on the indices nj , j < i and it is evident that if
such dependence is not present then one will end up with simple tensor products of states of
type (1).
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3.1. Examples

In order to illustrate the formalism, let us deal with a simple case in which we have two degrees
of freedom, r = 2. In this case equation (43) reduces to

|J1, J2, γ1, γ2〉 = 1√
N1(J1, J2)

∑
n1

J
n1/2
1√

ρ1(n1)
e−iγ1e1

1√
N2(n1, J2)

×
∑
n2

J
n2/2
2√

ρ2(n1, n2)
e−iγ1 e2 |n1, n2〉. (44)

We have already defined one kind of generalized coherent state for such a space in (32). We
now present two others.

3.1.1. GKS–GKS. The standard choice ρni
= ni!, ei = ni, i = 1, 2, yields the tensor product

of two independent GKS coherent states:

|z1, z2〉 = e−(|z1|2+|z2|2)/2
∞∑

n1=0

∞∑
n2=0

z
n1
1√
n1!

z
n2
2√
n2!

|n1, n2〉 zj = √
Jj e−iγj . (45)

These states are of course overcomplete and their weight function is simply 1/π2.

3.1.2. GKS-su(1, 1). In this case we introduce coherence variables for the first degree of
freedom in the following way:

|n1, J2, γ2〉 = (1 − J2)
(n1+2)/2

∞∑
n2=0

√(
n1 + n2 + 1

n2

)
J

n2/2
2 e−iγ2n2 |n1, n2〉. (46)

In this step we have, as in (15), a resolution of the projector In1 = ∑∞
n2=0 |n1, n2〉〈n1, n2|. We

now introduce the second pair of coherence variables again in a ‘GKS-like’ manner:

|J1, J2, γ1, γ2〉 = e−J1/2
∞∑

n1=0

J
n1/2
1 e−iγ1n1

√
n1!

|n1, J2, γ2〉. (47)

The complete resolution of identity now reads

I =
∫

dµ(J1, J2, γ1, γ2)|J1, J2, γ1, γ2〉〈J1, J2, γ1, γ2| (48)

where ∫
dµ(J1, J2, γ1, γ2) =

∫ 2π

0
dγ1

∫ 2π

0
dγ2

∫ ∞

0
dJ1

∫ 1

0
dJ2W(J1, J2) (49)

W(J1, J2) = 1

4π2

J1

(1 − J2)2
. (50)

4. Application to 2D magnetism

The Hamiltonian for two-dimensional spinless electrons confined by an isotropic harmonic
potential and submitted to a constant magnetic field B is written as

H = 1

2m

(
P +

e

c
A

)2
+

1

2
mω2

0R2 (51)
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where Coulomb interactions are neglected. In the symmetric gauge A = 1
2 B × R this

Hamiltonian can be expressed as a sum of a two-dimensional isotropic harmonic oscillator
and an angular momentum operator

H =
(

1

2m
P 2

x +
1

8
mω2X2

)
+

(
1

2m
P 2

y +
1

8
mω2Y 2

)
+

ωc

2
L0 ≡ H0 + Lz (52)

where ωc = eB/mc is the cyclotron frequency, ω =
√

ω2
c + 4ω2

0 and L0 = XPy − YPx .
Instead of directly using the oscillator annihilation operators,

ax = 1√
2

(
X

l0
+

il0
h̄

Px

)
ay = 1√

2

(
Y

l0
+

il0
h̄

Py

)
(53)

one can work with two other ones, which are linear superpositions of ax and ay :

a1 = 1√
2
(ax − iay) a2 = 1√

2
(ax + iay) (54)

where l0 = √
2h̄/mω. Note that a1 and a2 are bosonic operators:

[
a1, a

†
1

] = I = [
a2, a

†
2

]
.

The operators H0 and Lz can be simply expressed in terms of the number operators N1 = a
†
1a1

and N2 = a
†
2a2 as

H0 = h̄ω

2
(N1 + N2 + 1) Lz = h̄ωc

2
(N1 − N2). (55)

The eigenvectors of the total Hamiltonian are tensor products of single Fock oscillator states:

|n1, n2〉 = 1√
n1!n2!

(
a
†
1

)n1
(
a
†
2

)n2 |0, 0〉. (56)

In the following we will use the three families of generalized coherent states presented
above in order to obtain Berezin–Lieb inequalities for the thermodynamic potential associated
with the Hamiltonian (52). This system has already been considered in [5], where the authors
derived an exact analytic result for the thermodynamic potential. Our approach yields only
bounds to this quantity, and recovers the results of [5] in some special limits.

4.1. Harmonic oscillator symmetry

We first deal with the tensor product states (45):

|z1, z2〉 = exp

[
−1

2
(|z1|2 + |z2|2)

] ∑
n1,n2

z
n1
1√
n1!

z
n2
2√
n2!

|n1, n2〉. (57)

In this case the upper and lower symbols for the total Hamiltonian read

2Ĥ = h̄ω(|z1|2 + |z2|2 − 1) + h̄ωc(|z1|2 − |z2|2) = 2Ȟ − 2h̄ω. (58)

The Berezin–Lieb inequalities for the thermodynamic potential � = − 1
β

Tr ln(1 + e−β(H−µ)),
where µ is the chemical potential and β = 1/kBT , are given by

− 1

βπ2

∫
ln(1 + e−β(Ĥ−µ)) d2z1 d2z2 � � � − 1

βπ2

∫
ln(1 + e−β(Ȟ−µ)) d2z1 d2z2. (59)

By making the substitutions u = h̄β[|z1|2(ω + ωc) + |z2|2(ω − ωc)], v = h̄β|z1|2(ω + ωc),
they reduce to

− 1

β

∫ ∞

0
du

∫ u

0
dv ln(1 + κ+e−u) � � � − 1

β

∫ ∞

0
du

∫ u

0
dv ln(1 + κ−e−u) (60)
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and, after integrating by parts, eventually become

φ(κ+) � � � φ(κ−) (61)

where κ± = eβ(µ±h̄ω/2). The function φ is given by

φ(κ) = − κ

2β(βh̄ω0)2

∫ ∞

0

u2 e−u

1 + κ e−u
du

= 1

β(βh̄ω0)2

{
F3(−κ) for κ � 1

F3(−κ−1) − (ln κ)3

6 − π2 ln κ
6 for κ > 1

with

Fs(z) =
∞∑

m=1

zm

ms
. (62)

We can use inequalities (61) to study extreme regimes. For very high chemical potential with
respect to the quantum h̄ω/2, or alternatively in a semiclassical regime, we have κ± ≈ eβµ > 1
and the inequalities squeeze the thermodynamical potential to the value:

� ≈ −µ

6

(
µ

h̄ω0

)2
[

1 + π2

(
kBT

µ

)2

− 6

(
kBT

µ

)3

F3
(−e− µ

kB T
)]

. (63)

For extremely high temperature, kBT � µ, we have κ± ≈ 1 so that the thermodynamic
potential is approximately equal to

� ≈ kBT

(
kBT

h̄ω0

)2

F3(−1). (64)

This is in agreement with the exact results presented in [5].

4.2. su(2) symmetry

This dynamical symmetry can be put into evidence by introducing the operators L+ = a
†
1a2

and L− = a
†
2a1. The commutation relations read

[L+, L−] = 2
Lz

h̄ωc

,

[
Lz

h̄ωc

, L±

]
= ±L± (65)

and the invariant Casimir operator is given by

C = 1

2
(L+L− + L−L+) +

(
Lz

h̄ωc

)2

=
(

N1 + N2

2

) (
N1 + N2

2
+ 1

)
. (66)

Therefore, for a fixed value j = (n1 + n2)/2 of the operator (N1 + N2)/2 = H0/h̄ω − 1/2,
there exists a (2j + 1)-dimensional UIR of su(2) in which the operator Lz/(h̄ωc) has its
spectral values in the range −j � m = (n1 − n2)/2 � j . Note that in the weak field limit
ωc � ω0 the energy levels En1,n2 = h̄ω

2 (n1 + n2 + 1) + h̄ωc

2 (n1 − n2) can be approximated by
Ej = h̄ω0(2j + 1).

This symmetry suggests the use of states (32) that explicitly read

|J, γ, θ, ϕ〉 = e−J/2
∑

j∈N/2

J j

√
(2j)!

e−i2jγ

×
j∑

m=−j

√(
2j

j + m

) (
cos

θ

2

)j+m (
sin

θ

2

)j−m

e−i(j+m)ϕ |j,m〉. (67)
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The relations

H0 − h̄ω

2
= h̄ω

8π2

∫ 2π

0
dγ

∫
dS

∫ ∞

0
dJ J

J − 2

2
|J, γ, θ, ϕ〉〈J, γ, θ, ϕ|

Lz = h̄ωc

8π2

∫ 2π

0
dγ

∫
dS

∫ ∞

0
dJ

J 2

2
cos θ |J, γ, θ, ϕ〉〈J, γ, θ, ϕ|

〈J, γ, θ, ϕ|H0|J, γ, θ, ϕ〉 = h̄ω

2
(J + 1)

〈J, γ, θ, ϕ|Lz|J, γ, θ, ϕ〉 = h̄ωc

J

2
cos θ

(dS = sin θ dθ dϕ is the area element of the S2 sphere) allow us to write lower and upper
symbols for the total Hamiltonian:

Ȟ = J

2
(h̄ω + h̄ωc cos θ) +

h̄ω

2
= Ĥ + h̄ω. (68)

The Berezin–Lieb inequalities

−1

8π2β

∫ 2π

0
dγ

∫
dS

∫ ∞

0
dJJ ln[1 + e−β(Ĥ−µ)] � �

� −1

8π2β

∫ 2π

0
dγ

∫
dS

∫
dJJ ln[1 + e−β(Ȟ−µ)] (69)

in this case involve the integral∫
dS

∫ ∞

0
dJJ ln

[
1 + κ± e− β

2 (h̄ω+h̄ωc cos θ)J
] = 2π

∫ 1

−1
dy

∫ ∞

0
dJJ ln

[
1 + κ± e− β

2 (h̄ω+h̄ωcy)J
]

(70)

where again κ± = eβ(µ±h̄ω/2) and with the substitution y = cos θ . Therefore, since∫ ∞

0
x ln(1 + k e−cx) dx = −1

c2

{
F3(−k) for k � 1, c > 0

F3(−k−1) − (ln k)3

6 − π2 ln k
6 for k > 1, c > 0

(71)

and ∫ 1

−1

dy

(ω + ωcy)2
= 2(

ω2 − ω2
c

) = 1

2ω2
0

(72)

we can write (69) again as

φ(κ+) � � � φ(κ−) (73)

where φ(κ) is given by (62). The fact that we obtained the same result using both families
of generalized coherent states is not due to any peculiarity of the Hamiltonian. In fact, the
integrals in (59) and in (70) are related through the change of variables

|z1|2 + |z2|2 = J |z1|2 − |z2|2 = Jy (74)

and therefore will be the same for any Hamiltonian (and not only for the thermodynamic
potential).

4.3. su(1, 1) symmetry

The su(1, 1) structure underlying this 2D magnetism model can be displayed by introducing
the operators:

K+ = a
†
1a

†
2 K− = a1a2 K0 = 1

2
(N1 + N2 + 1) = H0

h̄ω
. (75)
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It is easy to see that these operators satisfy the su(1, 1) commutation relations. Hence, the
Casimir operator reads:

D = K2
0 − 1

2
(K+K− + K−K+) =

(
N1 − N2

2
+

1

2

) (
N1 − N2

2
− 1

2

)
=

(
Lz

h̄ωc

+
1

2

) (
Lz

h̄ωc

− 1

2

)
. (76)

When n1 � n2, for a fixed value η = (n1 − n2 + 1)/2 � 1/2 of the operator (N1 − N2 + 1)/2,
there exists a UIR of su(1, 1) in the discrete series, in which the operator K0 has its spectral
values in the infinite range η, η + 1, η + 2, . . . . Alternatively, when n1 � n2, for a fixed
value ρ = (−n1 + n2 + 1)/2 � 1/2 of the operator (−N1 + N2 + 1)/2, there also exists a
UIR of su(1, 1) in which the spectral values of the operator K0 run in the infinite range
ρ, ρ + 1, ρ + 2, . . . .

This symmetry is well suited to the strong field limit, in which ωc � ω0 and the energy
levels can be approximated by En1,n2 ≈ h̄ωc(n1 + 1/2). Therefore, for a given value of n1,
which corresponds to the Landau level index, we have an infinite degeneracy labelled by
n2. One can reinterpret it in terms of su(1, 1) symmetry by noting that, for a given value of
(n1 − n2), the energy eigenstates are ladder states for some discrete series representation of
this algebra.

The su(1, 1) symmetry has to be explored in a different way from the previous su(2)

symmetry. First of all, we have to decompose our Hilbert space into a direct sum of
three subspaces or sectors, corresponding to n1 > n2, n1 = n2 and n1 < n2 respectively:
H = H> ⊕H= ⊕H<. Accordingly, the trace of a function g of the Hamiltonian decomposes
as Tr(g(H)) = Tr>(g(H)) + Tr=(g(H)) + Tr<(g(H)). We can then apply Berezin–Lieb
inequalities for each sector.

In the first sector we use as generalized coherent states the superposition (47):

|J1, J2, γ1, γ2〉 = e−J1/2
∞∑

n=0

J
n/2
1√
n!

e−inγ1(1 − J2)
(n+2)/2

∞∑
m=0

√(
n + m + 1

m

)
J

m/2
2 e−imγ2 |n,m〉

(77)

where n = n1 − n2 − 1,m = n2.
To the sector n1 = n2 = n we simply associate GKS coherent states

|J3, γ3〉 = e−J3/2
∞∑

n=0

J
n/2
3√
n!

e−inγ3 |n〉. (78)

To the last sector we associate states analogous to (77) but with n = n2 − n1 − 1,m = n1.
Let us focus on the first sector. The resolution of the projector∫

dµ(J1, J2, γ1, γ2)|J1, J2, γ1, γ2〉〈J1, J2, γ1, γ2| =
∞∑

n2=0

∑
n1>n2

|n1, n2〉〈n1, n2| ≡ I> (79)

holds with
∫

dµ(J1, J2, γ1, γ2) given by (49) and (50). The restrictions H0> = I>H0I> and
Lz> = I>LzI> of the operators H0 and Lz can be written as

H0> = h̄ω

∫
dµ(J1, J2, γ1, γ2)

(J1 − 2)

2

(
1 + J2

1 − J2

)
|J1, J2, γ1, γ2〉〈J1, J2, γ1, γ2| (80)

Lz> = h̄ωc

∫
dµ(J1, J2, γ1, γ2)

(J1 − 1)

2
|J1, J2, γ1, γ2〉〈J1, J2, γ1, γ2| (81)
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and their lower symbols are given by

Ȟ 0> = h̄ω
(J1 + 2)

2

(
1 + J2

1 − J2

)
Ľz> = h̄ωc

(J1 + 1)

2
.

Therefore the upper and lower symbols for the restriction of the total Hamiltonian are

2Ĥ> = h̄ω(J1 − 2)

(
1 + J2

1 − J2

)
+ h̄ωc(J1 − 1)

2Ȟ> = h̄ω(J1 + 2)

(
1 + J2

1 − J2

)
+ h̄ωc(J1 + 1).

The lower bound integral in Berezin–Lieb inequalities restricted to the considered sector
is then given by

− 1

β

∫
dµ(J1, J2, γ1, γ2) ln[1 + e−β(Ĥ>−µ)]

= − 1

β

∫ ∞

0
dJ

∫ ∞

1
dy

J

2
ln

[
1 + σ+(y) e− β

2 (h̄ωy+h̄ωc)J
]

(82)

(with the substitution y = 1+J2
1−J2

), where

σ±(y) = e±β(h̄ωy+h̄ωc/2±µ). (83)

Since σ+(y) is always larger than 1, we get for (82)

2

β3h̄2

∫ ∞

1

dy

(ωy + ωc)2

{
F3(−σ+(y)−1) − (ln σ+(y))3

6
− π2 ln σ+(y)

6

}
. (84)

This integral is divergent and therefore yields no lower bound to the thermodynamic potential.
For the right-hand integral of the Berezin–Lieb inequalities we have

− 1

β

∫ ∞

0
dJ

∫ ∞

1
dy

J

2
ln

[
1 + σ−(y) e− β

2 (h̄ωy+h̄ωc)J
]
. (85)

When σ−(y) is larger than 1 the integral diverges. Therefore we assume h̄ω + h̄ωc/2 > µ

and then (85) becomes

− 2

β3h̄2

∫ ∞

1
dy

F3(−σ−(y))

(ωy + ωc)2
= − 2

β3h̄2

∞∑
n=1

(−1)n e−nβ(h̄ωc/2−µ)

n3ω(ω + ωc)
E2(nβh̄(ω + ωc)) ≡ U (86)

where

En(x) =
∫ ∞

1

e−xt

tn
dt . (87)

For the sector defined by n1 = n2 = n we have

∞∑
n=0

|n〉〈n| = 1

2π

∫ 2π

0
dγ

∫ ∞

0
dJ |J, γ 〉〈J, γ |

Ȟ 0= = h̄ω

2
(2J + 1) = Ĥ0= + h̄ω.

The bounds over the whole Hilbert space are obtained by adding the results for each sector.
We finally obtain the inequality:

� < ψ(e−β(h̄ω/2−µ)) + U (88)
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(a) (b) (c)

Figure 1. Pictorial representation of the state space |n1, n2〉. (a) Representations of 1D harmonic
oscillator. (b) Irreducible representations of su(2). (c) The discrete series of su(1, 1); lines above
(below) the dashed line belong to the first (second) sector, as considered in the text.

where ψ(κ) is given by

ψ(κ) = − 1

2πβ

∫ 2π

0
dγ

∫ ∞

0
ln[1 + κ e−βh̄ωJ ] dJ

= − 1

β2h̄ω

{−F2(−κ) for κ < 1
F2(−κ−1) + 1

2 (ln κ)2 − 2F2(−1) otherwise.

The inequality (88) is quite different from (61), showing that in general the results obtained
using different families of coherent states will not be the same. In particular, no lower bound
can be established using the su(1, 1) coherent states due to the divergence of the integral (84).

The three different types of coherent states that have been used for this two-dimensional
model have a simple geometric interpretation, shown in figure 1. In each one of them
we present a different perspective of the Hilbert space of states of the system (to each dot
corresponds a state |n1, n2〉), and the involved representations of su(2) and su(1, 1).
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